Tag Archives: ethics

New paper: The ethics of smart cities and urban science

A new paper by Rob Kitchin has been published in Philosophical Transactions A titled ‘The ethics of smart cities and urban science’ in a special issue on ‘The ethical impact of data science’.

Abstract

Software-enabled technologies and urban big data have become essential to the functioning of cities. Consequently, urban operational governance and city services are becoming highly responsive to a form of data-driven urbanism that is the key mode of production for smart cities. At the heart of data-driven urbanism is a computational understanding of city systems that reduces urban life to logic and calculative rules and procedures, which is underpinned by an instrumental rationality and realist epistemology. This rationality and epistemology are informed by and sustains urban science and urban informatics, which seek to make cities more knowable and controllable. This paper examines the forms, practices and ethics of smart cities and urban science, paying particular attention to: instrumental rationality and realist epistemology; privacy, datafication, dataveillance and geosurveillance; and data uses, such as social sorting and anticipatory governance. It argues that smart city initiatives and urban science need to be re-cast in three ways: a re-orientation in how cities are conceived; a reconfiguring of the underlying epistemology to openly recognize the contingent and relational nature of urban systems, processes and science; and the adoption of ethical principles designed to realize benefits of smart cities and urban science while reducing pernicious effects.

The paper is behind a paywall, so if you don’t have access and you’re interested in reading email Rob (rob.kitchin@nuim.ie) and he’ll send you a copy.

Two invited talks in Boston on smart cities

Rob Kitchin gave two invited talks in Boston last week concerning Programmable City research.

The first was at UMass Boston, sponsored by APA-MA, BSA, MAPC, MAPD, MACDC, BRA, Mel King Institute, and was entitled ‘Planning in the era of smart urbanism.  The slides for the talk can be found at: http://www.slideshare.net/robkitchin/planning-in-an-era-of-smart-urbanism

The second was at the launch of MIT’s new Institute for Data, Systems and Society and was entitled ‘Ethics and risks of urban big data and smart cities’. The slides for the talk can be found at: http://www.slideshare.net/robkitchin/the-ethics-and-risks-of-urban-big-data-and-smart-cities  A video of the event can be found at: https://idss2016.mit.edu/

New paper: Urban data and city dashboards: Six key issues

Rob Kitchin and Gavin McArdle have published a new Programmable City working paper (no. 21) – Urban data and city dashboards: Six key issues – on SocArXiv today.  It is a pre-print of a chapter that will be published in Kitchin, R., Lauriault, T.P. and McArdle, G. (eds) (forthcoming) Data and the City. Routledge, London..

Abstract

This chapter considers the relationship between data and the city by critically examining six key issues with respect city dashboards: epistemology, scope and access, veracity and validity, usability and literacy, use and utility, and ethics.  While city dashboards provide useful tools for evaluating and managing urban services, understanding and formulating policy, and creating public knowledge and counter-narratives, our analysis reveals a number of conceptual and practical shortcomings.  In order for city dashboards to reach their full potential we advocate a number of related shifts in thinking and praxes and forward an agenda for addressing the issues we highlight.  Our analysis is informed by our endeavours in building the Dublin Dashboard.

Key words: dashboards, cities, access, epistemology, ethics, open data, scope, usability, utility, veracity, validity

Opening up smart cities: A report on the Smart City Expo World Congress

A couple of weeks ago I attended the Web Summit in Dublin, a large, tech entrepreneur event (my observations on the event are posted here).  This week I spent three days at the Smart City Expo World Congress in Barcelona, another event that considered how technology is being used to reshape social and economic life, but which had a very different vibe, a much more mixed constituency of exhibitors and speakers (a mix of tech companies, consultants, city administrations/officials, politicians, NGOs, and academics; over 400 cities sent representatives and 240 companies were present, and there were over 10,000 attendees), and for the most part had a much more tempered discourse.  We presented our work on the Dublin Dashboard and the use of indicators in knowing and governing cities, attended the congress (keynote talks, plenary panels, and parallel paper sessions) and toured round the expo (a trade fair made up mostly of company and city stands).  I thought it would be useful to share my observations with respect to the event and in particular some of the absences. Continue reading

Hype, hubris, hope, heads in the sand, and some very cool stuff: A report on the Web Summit

A chunk of the Programmable City team attended the Web Summit in Dublin last week.  I was fortunate to be asked to MC the Machine Stage for Tuesday afternoon (on smart cities/smart cars), and also presented a paper, participated in a panel discussion, and chaired a private panel session, all on smart cities.  As well reported in the media, it was an enormous event attended by 22,000 people, with 600 speakers across nine stages, and hundreds of stands, many of which changed daily to accommodate them all.  No doubt a huge amount of business was conducted, personal networks extended, and thousands of pages of copy for newspapers, magazines and websites filed.

To me what was interesting about the event were the silences as much as what was presented and displayed.  There were loads of very interesting apps and technologies demoed, many of which will have real world impact.  That said, there was also a lot of hype, hubris, hope, self-promotion, buzzwords (to my ear ‘disruption’, ‘smart’, ‘platform’, ‘internet of things’ and ‘use case’ were used a lot), Californian ideology (radical individualism, libertarianism, neoliberal economics, and tech utopianism), and heads in the sand.  In contrast, there was an absence of critical reflection about the following three broad concerns. Continue reading

Predictive analytics in the city

Predictive analytics is a way of responding to and taking advantage of historical and emerging, large datasets by using “a variety of statistical, modeling, data mining, and machine learning techniques … to to make predictions about the future”. One of the advantages of drawing predictions from big data, according to the vision of social physics, is that

You can write down equations that predict what people will do. That’s the huge change. So I have been running the big data conversation … It’s about the fact that you can now understand customers, employees, how we organise, in a quantitative, predictive way for the first time.

Predictive analytics is fervently discussed in the business world, if not fully taken up, and increasingly by public services, governments or medical practices to exploit the value hidden in the public archive or even in social media. In New York for example, there is a geek squad to Mayor’s office, seeking to uncover deep and detailed relationships between the people living there and the government, and at the same time realising “how insanely complicated this city is”. In there, an intriguing question remains as to the effectiveness of predictive analytics, the extent to which it can support and facilitate urban life and the consequences to the cities that are immersed in a deep sea of data, predictions and humans.

Let’s start with an Australian example. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) has partnered with Queensland Health, Griffith University and Queensland University of Technology and developed the Patient Admission Prediction Tool (PAPT) to estimate the presentations of schoolies, leavers of Australian high schools going on week-long holidays after final examines, to nearby hospitals. The PAPT derives their estimates from Queensland Health data on schoolies presentations in previous years, including statistics about the numbers of presentations, parts of the body injured and types of these injuries. Using the data, the PAPT benefits hospitals, their employees and patients by improved scheduling of hospital beds, procedures and staff, with the potential of saving $23 million per annum if implemented in hospitals across Australia. As characterised by Dr James Lind, one of the benefits of adapting predictive analytics is the proactive rather than reactive approaches towards planning and management:

People like working in a system that is proactive rather than reactive. When we are expecting a patient load everyone knows what their jobs [are], and you are more efficient with your time.

The patients are happy too, because they receive and finish treatment quickly:

Can we find such success when predictive analytics is practised in various forms of urban governance? Moving the discussion back to US cities again and using policing as an example. Policing work is shifting from reactive to proactive in many cities, in experimental or implementation stages. PredPol is predictive policing software produced by a startup company and has caught considerable amount of attention from various police departments in the US and other parts of the world. Their success as a business, however, is partly to do with by their “energetic” marketing strategies, contractual obligations of referring the startup company to other law enforcement agencies, and so on.

Above all, claims of success shown by the company are difficult to sustain in closer examination. The subjects of the analytics that the software focuses are very specific: burglaries, robberies, vehicle thefts, thefts from vehicles and gun crimes. In other words, the crimes that have “plenty of data to chew on” for making predictions, and are of the opportunistic crimes which are easier to prevent by the presence of the patrolling police (more details here).

This further brings us to the issue of the “proven” and “continued” aspects of success. These are even more difficult and problematic aspects of policing work for the purpose of evaluating and “effectiveness” and “success” of predictive policing. To prove that an algorithm performs well, expectations for which an algorithm is built and tweaked have to be specified, not only for those who build the algorithm, but also for people who will be entangled in the experiments in intended and unintended ways. In this sense, transparency and objectivity related to predictive policing are important. Without acknowledging, considering and evaluating how both the crimes and everyday life, or both normality and abnormality, are transformed into algorithms and disclosing them for validation and consultation, a system of computational criminal justice can turn into, if not witchhunting, alchemy – let’s put two or more elements into a magical pot, stir them and see what happens! This is further complicated by knowing that there are already existing and inherent inequalities in crime data, such as reporting or sentencing, and the perceived neutrality of algorithms can well justify cognitive biases that are well documented in justice system, biases that could justify the rational that someone should be treated more harshly because the person is already on the black list, without reconsidering how the person gets onto such list in the first place. There is an even darker side of predictive policing when mundane social activities are constantly treated as crime data when using social network analysis to profile and incriminate groups and grouping of individuals. This is also a more dynamic and contested field of play considering that while crime prediction practitioners (coders, private companies, government agencies and so on) appropriate personal data and private social media messages for purposes they are not intended for, criminals (or activists for that matter) play with social media, if not yet prediction results obtained by the reverse engineering of algorithms, to plan coups, protests, attacks, etc.

For those who want to look further into how predictive policing is set up, proven, run and evaluated, there are ways of opening up the black box, at least partially, for critically reflecting upon what exactly it could achieve and how the “success” is managed both in computer simulation and in police practices. The Chief scientist of PredPol gave a lecturer where, as pointed out:

He discusses the mathematics/statistics behind the algorithm and, at one point, invites the audience not to take his word for it’s accuracy because he is employed by PredPol, but to take the equations discussed and plug in crime data (e.g. Chicago’s open source crime data) to see if the model has any accuracy.

The video of the lecturer is here

Furthermore, RAND provides a review of predictive policing methods and practices across many US cities. The report can be found here and analyses the advantages gained by various crime prediction methods as well as their limitations. Predictive policing as shown in the report is far from a crystal ball, and has various levels of complexity to run and implement, mathematically, computationally and organisationally. Predictions can range from crime mapping to predicting crime hotspots when given certain spatiotemporal characteristics of crimes (see a taxonomy in p. 19). As far as prediction are concerned, they are good as long as crimes in the future look similar to the ones in the past – their types, temporality and geographic prevalence, if the data is good, which is a big if!. Also, predictions are good when they are further contextualised. Compared with predicting crimes without any help (not even from the intelligence that agents in the field can gather), applying mathematics to help in a guessing game creates a significant advantage, but the differences among these methods are not as dramatic. Therefore, one of the crucial messages intended by reviewing and contextualising predictive methods is that:

It is important to bear in mind that the predictive methods discussed here do not predict where and when the next crime will be committed. Rather, they predict the relative level of risk that a crime will be associated with a particular time and place. The assumption is always that the past is prologue; predictions are made based on the analysis of past data. If the criminal adapts quickly to police interventions, then only data from the recent past will be useful to police departments. (p. 55)

Therefore, however automated, human and organisational efforts are still required in many areas in practice. Activities such as finding relevant data, preparing them for analysis, tweaking factors, variables and parameters, all require human efforts, collaboration as a team and transforming decisions into actions for reducing crimes at organisational levels. Similarly, human and organisational efforts are again needed when types and patterns of crimes are changing, targeted crimes shift, results are to be interpreted and integrated in relation to changing availabilities of resources.

Furthermore, the report reviews the issues of privacy, transparency, trust and civil liberties within existing legal and policy frameworks. However, it becomes apparent that predictions and predictive analytics need careful and mindful designs, responding to emerging ethical, legal and social issues (ELSI) when the impacts of predictive policing occur at individual and organisational levels, affecting the day-to-day life of residents, communities and frontline officers. While it is important to maintain and revisit existing legal requirements and frameworks, it is also important to respond to emerging information and data practices, and notions of “obscurity by design” and “prodecural data due processes” are ways of rethinking and designing relationships between privacy, data, algorithms and predictions. Even the term transparency needs further reflections to make progress on issues concerning what it means under the context of predictive analytics and how it can be achieved by taking into account renewed theoretical, ethical, practical and legal considerations. Under this context, “transparent predictions” is proposed wherein the importance and potential unintended consequences are outlined with regards to rendering prediction processes interpretable to humans and driven by causations rather than correlations. Critical reflections on such a proposal are useful, for example this two part series – (1)(2), further contextualising transparency both in prediction precesses and case-specific situations.

Additionally, IBM has partnered with New York Fire Department and Lisbon Fire Brigade. The main goal is to use predictive analytics to make smart cities safer by using the predictions to better and more effectively allocate emergency response resources. Similarly, crowd behaviours have already been simulated for understanding and predicting how people would react in various crowd events in places such as major traffic and travel terminals, sports and concert venues, shopping malls and streets, busy traffic areas, etc. Simulation tools take into account data generated by sensors, as well as quantified embodied actions, such as walking speeds, body sizes or disabilities, and it is not difficult to imagine that more data and analysis could take advantage of social media data where sentiments and psychological aspects are expected to refine simulation results (a review of simulation tools).

To bring the discussion to a pause, data, algorithms and predictions are quickly turning not only cities but also many other places into testbeds, as long as there are sensors (human and nonhuman) and the Internet. Data will become available and different kinds of tests can then be run to verify ideas and hypotheses. As many articles have pointed out, data and algorithms are flawed, revealling and reinforcing unequal parts and aspects of cities and city lives. Tests and experiments, such as manipulating user emtions by Facebook in their experiments, can make cities vulnerable too, when they are run without regards to embodied and emotionally chared humans. Therefore, there is a great deal more to say about data, algorithms and experiments, because the production of data and experiments of making use of them are always an intervention rather than evaluation. We will be coming back to these topics in subsequent posts.